Roll No.:....

C033512(033)

B. Tech. (Fifth Semester) Examination, Nov.-Dec. 2021

AICTE (New Scheme)

(Information Technology Engg. Branch)

THEORY of COMPUTATION

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) of each question is compulsory and carrying 4 marks each. Attempt any two parts from (b), (c) and (d) of each questions & carries 8 marks each.

Unit-I

- 1. (a) Explain 2-way finite Automata with example.
 - (b) Consider the mealy machine described by transition

table in given figure, construct a moore machine which is equivalent to the given mealy machine.

- (c) Define Myhill nerode theorem. Explain the property of FSM.
- (d) Find DFA for following language on $\Sigma = [a, b]$
 - (i) $L = \{w[na(w) nb(w)] \mod 3 > 0\}$
- (ii) $L = \{w/w \text{ second symbol in w from right hand side should be a.}$

Unit-II

- **2.** (a) Convert regular expression to dfa for $a + b(ab)^* ba$
 - (b) What is Pumping Lemma? Also explain closure properties of regular language.

- (c) Construct finite automata equivalent to the regular expression (D+1)*(00+11)(D+1)*.
- (d) State & Prove Arden's theorem and also explain with suitable example.

Unit-III

- 3. (a) Define context free Grammar and write a grammar for $S = \{anbn, n >= 1\}$.
 - (b) Convert the grammar into GNF

$$S \rightarrow AB$$

$$A \rightarrow BS/a$$

$$B o SA/b$$
 at the first probability of the state of the second s

(c) Find reduced grammar equivalent to the grammar G whose productions are :

$$S \rightarrow AB/CA$$

$$S \rightarrow BC/AB$$

$$A \rightarrow a$$

$$S \rightarrow aB/b$$

(d) Explain chomsky hierarchy of grammar.

Unit-IV

- 4. (a) Define DPDA and NPDA.
 - (b) To construct a PDA for accepting the palindrome String where $\Sigma = \{a, b\}$.
 - (c) Construct a PDA A accepting the set of all string over $\{a,b\}$ with equal member of a and B.
 - (d) Design a PDA for $S = \{a^n b^m c^m d^n\}$.

Unit-V

- 5. (a) Explain Turing model for computation.
 - (b) Design a TM that accepts $a^n b^n c^n / n > = 1$.
 - (c) Explain Halting problem of Turing Machine.
 - (d) Explain Recursive and Recursive Enumerable Sets.